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ABSTRACT

The tactic of "relaxation" has often been used in one guise
or another in order to cope with mathematical programs with a large
number of constraints, some or all of which may be only implicitly
available. By "relaxation" we mean the solution of a given problem
via a sequence of smaller problems that are relaxed in that some of
the inequality constraints are temporarily ignored. Relaxation has
been used primarily in the context of linear programming, but in this
paper we examine a version that is valid for a general class of con-
cave programs. Constraints are dropped as well as added from relaxed
problem to relaxed problem. A speclalization to the completely linear
case is shown to be equivalent to Lemke's Dual Method. This result
permits some pertinent inferences to be drawn from the extensive com-
putational experience availasble for the (primal) Simplex Method.

Other matters pertaining to computational efficacy are discussed. An
interpretation of relaxation in terms of the dual in the nonlinear

case ;27:;tablished. The optimal multipliers generated by successive
relaxed problems turn out to comprise a sequence of improving feasible
solutions to the minimax dual. When interpreted in this way, it be-
comes apparent that relaxation corresponds to just the opposite tactic--
which we call "restriction"--upplied to the dual problem. Restriction
is an equally interesting and useful tactic in its own right, and its

main features are outlined.




1.
I. INTRODUCTION

Quite often an optimization problem with some inequelity con-
straints possesses one or more of the following properties:

(1) prior knowledge is availsble concerning which of the con-

straints might be active at an optimum solution;

(2) there are so many constraints that the dimension limits

of coded algorithms for aveilable computers are exceeded;

(3) some of the constraints are available only implicitly,

and can be generated in explicit form only at substantial
expense.,

Property (1) may hold when a variant of the problem has been
solved before, or when the problem is amenable to physical or mathe-
matical insight. Property (2) is the seemingly ubiquitous bane of prac-
tical applications. And property (3), usually in conjunction with pro-
perty (2), is a frequent consequence of mathematical manipulaticnsof a
more natural problem formulation.

For problems such as these a rather cbvious "relaxation" tac-
tic comes to mind for use in conjunction with any algorithm that would
be applicable were it not for properties (2) or (3): solve a relaxed
version of the given problem that ignores some of the inequality con-
straints; if the resulting solution satisfies all o1r the ignored con-
straints then it must be optimal in the original problem, but otherwise
generate and include one or more violated constraints in the relasxed
problem and reoptimize it; continue to generate and add violated con-
straints in this fashion until the original problem has been solvedl.
1.3, Dantzig (6] 1s largely responsible for popularizing this tactic in
the context of linear programming. He called it "the method of additional

restraints” for handling "secondary constraints"”. See also Thompson,
Tonge and Zionts [25].
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This tactic seems quite promising if (as is usually the case) only a
fairly small proportion of all inequality constraints is actually
binding at an optimal solution of the original problem, provided that
reasonably efficient mechanisms are avallable for identifying violated
constraints and reoptimizing the relgxed problems. A useful improve-
ment involves dropping amply satisflied constraints of the relaxed pro-
blem from time to time, but this must be done so as not to destroy the
inherent finiteness of the procedure.

It is interesting to observe that Lemke's Dual Method [17]
can be interpreted as a procedure for implementing the improved tactic
within the specialized context of linear programming. Curiously this
conspicuous interpretation seems never to have been explicitly stated
and proved in the subsequent literature, although it 1is certainly part
of the "folklore" of linear programming and has been used in one form
or another by several authorsz. As a result of this gap in the liter-
ature, it would seem that the pedagogy and even development of mathe-
matical programming has suffered unnecessarily. Primal-motivated

methods using such tactics3

and dual methods are rarely exhibited in
their proper relation to one another, and it has seldom been recognized
that computational experience with variants of truly primal methods
tells us something about the behavior of methods using corresponding
variants of relaxation. The purpose of this note is to help smoothe
over this hiatus in the literature.

2See Balinski (1], Charnes, Cooper and Miller [4], Gomcry [12], and
Gomory and Hu [13].

3See, e.g., Benders [3), Cheney and Goldstein [5), Dantzig, Fulkerson
and Johnson (7], Gomory [11], Kelley [16], Ritter [19], Stone [23),
and Van Slyke and Wets [26].
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In sec. II we formally state a version of relaxation that
permits constraints to be dropped from, as well as added to, the relaxed
problems. Termination in a finite number of iterations is easily shown for a
general class of concave programs. In sec. III we establish, under a
non-degeneracy assumption, that in the completely linear case a speci-
alization of the relexation tactic is equivalent to Lemke's Dual Method.
Matters pertaining to computational efficacy are discussed in the
following section. A number of inferences are drawn, with the help of
the result of sec. I1I, from availsble computational experience with
variants of the Simplex Method. In the fifth and final section we
establish an enlightening interpretation of relaxation in terms of the
dual problem in the nonlinear case. It turns out that the optimal
multipliers generated by successive relaxed problems comprise a sequence
of improving feasible solutions to the minimax dual. Wheu interpreted
in this way, it becomes apparent that relaxation applied to the (original)
primal problem corresponds to just the opposite tactic--which we call
"restriction"--applied to the dual. Restriction is an equally inter-
esting and useful tactic in its own right, and we conclude the paper

with an outline of its main features.




II. STATEMENT AND PROOF OF THE RELAXATION TACTIC

Let ¢, 81’ ,gm be concave functions on a non-empty convex

set X c R”, and define M = (1,2,...,m}). The problem

(P) Maximize _ . £(x) subject to gi(x) >0, 1¢M

will be converted to a finite sequence of smaller problems of the form
(p) Maximize _ o f(x) subject to g,(x) 20, 1¢SCM.

Assume that a subset S° is known such that (Pso) admits
an optimal solution xso (with r(xso) < »), and assume further that
(PS) admits an optimal solution whenever it admits a feasible solution
and its maximand is bounded above on the feasible region. For these
assumptions to hold it is of course sufficient, but not necessary,
that X be compact and all functions continuous (one may enforce
boundedness, if necessary, by using a "regularization” artifice).

Under these assumptions, we shall show that the following tactic 1is
well-defined and terminates in a finite number of steps.
Relaxation
Step 0: Put fso gnd S = S°, vhere S° 1is any subset of M
such (Pso) admits a finite optimal solution.
Step 1: Solve (PS) for an optimal solution x> 1f one exists;
if none exists (i.e., (PS) is infeasible), then terminate
with the message "(P) infeasible". 1If gi(xs) > 0 for all

i ¢ M-S, terminate with the message "S 4 an optimal

solution of (P)"; otherwise, go to Step 2.
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Step 2: Put v equal to any subset of M that includes at

least one constraint violatedh by O s f(xS) <%,
replace S by EUv, vwhere E = {1 e S: gi(xs) - 0],
and f by f(xs); otherwise (i.e., 1if f(xs) =7),
replace S by S U v. Return to Step 1.

This tactic simply goes from one rzlaxed problem to the next
by adding at least one constraint that is violated at an optimel solu-
tion of the current relaxed problem, while deleting the amply satisfied
constraints so long as the value of the objective function is decreasing.
Eventually a relaxed problem is encountered that is either infeasible,
in which case (P) obviously must be infeasible, or has an optimal
solution that is also feasible in (P), in which case that solution ob-
viously must solve (P).

To show that the relaxed problems which arise are either in-
feasible or admit an optimal solution, in view of our assumptions it is
enough to show inductively that the sequence <fs'> is non-increasing,

S s the supremum of the maximand of (PS) (1let 52 1f

vhere f
(Ps) 1s infeasible). Certainly el < ts, ana Y < £ . We
assert that fE = rs, vhich yilelds the desired monctonicity of <fs>.
This assertion 1s an easy consequence of
Lemma 1.1: Let x° de optimal for (Ps). Ir gJ(xS)> oL,
where je¢ S, then 5 48 also optimal for (PS_ J)°
Proof: Certeinly £ 9> f(x"). Suppose that £°9 > £(x°). Then

hNote the wide latitude in the choilce of v. A common choice of v is
to make it the index of the most violated constraint, but many other
choice criteria are possible. See the discussion of sec. IV.
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. there exists a point x' feasible in (PS-J) such that f(x') > f(xs).
We may assume gJ(x') < 0, or else x' would contradict the optimality
of x° 1n (PS). By the concavity of f and the g,, 16 S, and the
convexity of X, 1t follows that for A positive but sufficiently
small the point Ax' + (l-)\)xS is feasible in (PS). But then
f()\x'+(l-)‘)xs) > Af(x') + (1-2) f(xs) > f(xs), which contradicts the
definition of x°. Hence f° 9= f(xs), and x° must be optimal for
(2.y)+

Thus far we have shown that the tactic 1s well-defined and
that the seguence <f(xs,‘> is non-increasing. Since Step 2 only de-

letes amply satisfied constraints from S (before adding v) when
Sy
/

£(x has just decreased, 1t follows from the finiteness cf the
number of possiblie subsets of M that <f(xs)> can remain constant
for only a finite number of consecutive lterations. Again appealing

¢ to the finiteness of the number of possible trial sets, we see that
finite termination is established.

Theorem 1,1: Relaxation terminates in & finite number of

steps with either (a) an optimal solution of (P), or (b)

the identification of a subset of the constraints of (P)

that are collectively infeasible over X. Moreover, in case

(a) a non-increasing sequence <f(xS)> of upper bounds on

the optimal value of (P) 1is obtained.

It is worth emphasizing again at this puint that relaxation
is a tactic and no more, It is not a computational procedure
for solving (P) wuntil it is applied in conjunction with an algorithm
for solving the relaxed problems (PS)’ However, let not its utter

simplicity in the mathematical sense belie its usefulness.
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Other variants of this tactic for convex programming have
been given by Geoffrion [8 and 9], Oettli [18], Sethi [21], and Takeuti
[24]. See also Cheney and Goldstein [5) for an application and proof

of similar tactics to problems with an infinite number of constraints

(cf. footnote 9).
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III. RELATION TO THE DUAL METHOD

The fact that a feasible solution of (P) 1is not obtained
until the final step, and that <f(xs)> is monotone decreasing to the
optimal value of (P), suggests the adjective "dual" in deseribing re-
laxation. In this section we shall show that relaxation can be special-
ized in a na}:ural way 80 as to be equivalent to Lemke's Dual Method [17]
vhen (P) is a linear programs. A more general dual interpretation is
suggested in the final section.

Let f(x) = cx, gi(x) =x, M= (1,¢00,n), and X = {x:Ax =b)
hold for (P), where A 1is T, X B The Dual Method is
initiated with some set B° of variebles designated as ™pasic" which
ylelds, from the "reduced costs" of an associated tabular representation
of (P) (see below), a feasible solution of the dual to (P). Assuming
that the successive feasible solutions tc the dual are non-degenerate,
ve shall prove

Theorem 2.1: If S° is taken as M-B® and v always as

the most violated constraint, then the set of non-basic vari-

ables at the U'th iteration of the Dual Method coincides

with E at the Uth iteration of relaxation, and the {Jth

basic solution coincides with the U'th xS.

It is necessary to give a brief rendering of the Dual Method
in order to establish the notation used in the proof. More complete
details may be found, for example, in [15] or {17].

Problem (P) can be restated as one of maximizing 2z subject
to x> 0 and the following equality constraints stated as a tableau
(ml+1 ;y n+2) of detached coefficients:

5See also Beale's "method of leading variables" [2], developed independ-
ently but nearly equivalent to Lenke'!s Dual Method."
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Z X = 1l
1 -C 0 I
|+ | v |

At any given iteration there is specified a collection B of By

basic variables such that Ail exists, where AB is formed by ex~-

tracting columns from A according to B, and such that c = (cBAB-l) A
.=¢>0, vhere °q i1s similarly formed by extraction according to

B. Moreover, the equality constraints are re-expressed as:

X = 1

lI (cBA];l)A -c cBABlb

ol ala b

1 —

If b= A];l b> 0, then it is easily shown that an optimal solution of

(P) is at hand: put Xy = O for Jj non-basic and the basic varisble

th

corresponding to the 1 rowv) equal to b If b 0, then let
SEY £

i.
‘Sr be the most negative component (actually, any negative component

will dc) and test make sure that at least one component Er j of the

matrix Al';l A 1s negative for some non-basic J (if none is negative,

it can be shown that (P) is mfeasible). Let k be defined so that |

<0},

c
—— = Maximum - : J non-basic and a

a £
Tk rj
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and pivot on the element a to obtain the detached coefficient array

rk
corresponding to the new set of basic variables (B - Br + k) (xk is
called the "entering," and xg the "exiting" basic varisble). If

Ek > 0 then cBAgl b strictl; decreases, and in any event the new ¢
is also non-negative, The assumption of dual non-degeneracy means that
c 3 > 0 for all non-basic J at each iteration, and can always be en-
forced by arbitrarily small perturbations of the problem data.

We are now in a position to make three key observations about
the Dual Method. The first can be found essentially in Charqes » Cooper
and Miller (4, p. %el.

Lemma 2,1: At any iteration of the Dual Method, the current

basic solution is the unique optimal solution of (PS) with

£ equal to the current set of non-basic variables (S = M-B).

Proof: The current basic solution is certainly feasible in (PM_B).

To show that it is optimal, by the Dual Theorem of linear programming
it suffices to display a feasible solution to the dual of (PM-B) with
the same value of the objective function. One has only to verify, using
¢c> 0, that (cBﬁ;al) is such a dual solution. Uniqueness of the
op:imal solution of (PM-B) follows from the assumed non-degeneracy of
the dual.,

Lemma 2.2: If the Dual Method terminates because (P) 1is in-

feasible (i.e., if Sr < 0 and Er >0 for all non-basic

J
at some tableau), then (Ps) s with S equal to the current

set of non-basic variables plus Br’ is infeasible.

Proof: By the Dual Theorem of linear programming, it is enough to show

that the dual of (PS) is feasible and has an unbounded optimum. It
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may be verified that (cBA;l) + e(Al';l)r s where (A;l)r 1s the r°P

row of A;l (fr < 0), d4s feasible in the dual for all 6> O end

achieves gn arbitrarily small value of the dual objective as 0 - =,
Lemma 2,3: At any non-terminal iteration of the Dual Method,
ir X, is the entering basic variable then X, > 0 in the
next basic solution,

Proof: The definition of the pivot operation implies that x = (Sr/’érk)
in the next basic solution, By selection, gr <0 and :rk < 0.

Proof of Th. 2.1: The proof proceeds by induction on ye At p = 1,

©  has been taken as M-Bo, the initial set of non-basic variables,

0 o
Lemma 2,1 asserts that (Pso) bas a unique solution x> . Hence x
o

must be the initial basic solution. Since xi = O by definition for

all non-basic J, E = So. Thus the assertion is true for y, = 1.
th

S

Assume that the assertion 1s true for the Yo iteration

of the Dual Method. Either the " 1iteretion is terminel beceuse
(P) has been solved, or is terminal because (P) has been found to

be infeasible, or is not terminal. In the first case, relaxation elso

terminates with an optimal solution of (P)., In the second case, by
Lemma 2,2 the next relaxed problem encount¢red is infeasible and
therefore terminal. Consider now the third case. We shall show that
the assertion of the theorem holds at the next iteration by detailing
the operation of relaxation starting at Step 2 of the current iteration.

Duel non-degeneracy implies that f(xs) decreases strictly

)St

at each iteration. Hence the trial set to be used at the (uo+l
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iteration of relaxationis E U Br’ where xB is the most negative
bo

component of the current xs. It follows from Lemmas 2.1 and 2,3 that

(PE UBr) has a unlique solutlon, and that all components indexed by

E UBr vanish in this solution except for x which 1is strictly

k)
positive. The assertion of the theorem now follows immediately.
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IV, COMPUTATIONAL EFFICACY
Let us turn now to questions concerning computational efficacy.
We have already mentioned in sec. I three properties which strongly en-
courage ~ 1f not demand ~ the use of tactics such as the present one,
But this is not to say that computational success will necessarily be
achleved if these properties hold, Computational suecess probably de=-

pends more on the following three conditions:

(a) only a feirly small proportion of all inequality con-
straints should actually be binding at an optimal solu=
tion of (P);

(b) a reasonsbly efficient mechenism must be available for
identifying suitable violated constreints given a trial
solution of (P);

(c) a reasonably efficient mechanism must be available for

reoptimizing the reduced problem at each iteration.

That condition (a) often holds has frequently been mentioned
(and exploited via similar tactics) for various special problem classes;
for example, by Dantzig, Fulkerson and Johnson (7] for a linear pro-
gramming equivalent of the traveling salesman problem, by Dantzig (6]
for oil refinery problems, by Charnes, Cooper and Miller (4] for
bounded variables and warehouse~type problems, and by Van Slyke and Wets

[26] for optimel control and stochastic programming problems.
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In fact it is easy to see that condition (a) will always hold for
linear programs with a large number of inequality constraints relative
to the number of structural variables, since an optimal solution occurs
at an extreme point of the feasible regions. The ssme line of reasoning
does not apply to nonlinear problems, but from curvature considerations
and common experience it appears that condition (a) holds even more
strongly than in the linear case.

Condition (b) 1s least troublesome if the inequality con-
straints are reasonable in number and explicitly available, for then
there is no difficulty in implementing any reasonable criterion for
the choice of v, Most commonly v i1is taken to be the most violated
constraint, but many other criteria are possible. There is little
theoretical or empirical evidence to distinguish these criteria from
one another in terms of relative effectiveness. In view of the result
of sec. III, however, we can perhaps draw some tentative inferences
based on experience with the purely linear case. Extensive experiments
have been cmiege;ﬁ'.bycéi;lz‘ing alternative rules for selecting pivctal
columns in the usual Simplex Method for linear programming. This 1s
actually the same as comparing analagous rules for choosing a singleton
v with prelaxation aprplied to the cual problem. Results
indicate that while the "most violated constraint"” rule may not be
best in terms of minimizing the number of required iterations, other

plausible rules can be expected to be consistently better by no more

6It should be noted that one could argue (cf. Seith and Orcherd-Hays
[22] and Stone [23])for the usefulness in linear programming of tactics
of the present sort even in the absence of condition (a).
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than a factor of two or so. An example of a somewhat better rule
is the so-called “greatest-change" rule, which for the present tactic
emounts to choosing i in M-S to maximize the decrease in the optimal
value of the next relaced. problem. Unfortunately such a rule is likely
to be expensive to implement for a nonlinear problem. Choosing v to
be the most violated constraint typically leads, in the linear caseg, to
a number of iterations equal to about twice the number of variebles,
Results pertinent to the choice of v when more than one constraint
index is allowed are availeble from experiments with the "suboptimi-
zation" tactie [27, p. 190).It vas observedT, for example, that taking
v to consist of the five most violated constraints reduced the number
of iterations by a factor of two as compared with the single most
violated constraint rule. Of course this increases the amount of com-
putation required to solve each vélaxed problem, but with the product
form of the Simplex Method there 1is a significant net benefit in terms
of total computing time. It is not known to what extent experience
such as this for the linear case is a useful guide for the choice of
v in the nonlinear case.

Condition (b) is more troublesome when the constreints are
vast in number or only implicitly available. In this case concern over
the best criterion for the choice of v 4s often all but irrelevant,
since none but the simplest criteria can be implemented at reasonable
computational cost. Sometimes only a few violated constraints are in-

expensively available each time the relaxed problem is solved, and it

7Again we invoke a dual interpretation of the primel algor!thm.
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is indicated that they be used whether or not they satisfy any global
criterion. This is the case, for example, with Dantzig, Fulkerson and
Johnson's problem [7] ,with Gomory's integer progremming algorithms
(12, p. 133], and with Kelley's cutting-plane method [16] 8. On other
occasions one can implement the "most violated constraint” criterion by
solving a subsidiary optimization problem (or several smaller subsidiary
problems, ghould special structure cause the constraints to partition
naturally into several groups). This was the prescription of Cheney
and Goldstein [5]) in most of their algor:l.thms9 . For Benders [3)] the
subsidiary problem took the form of a linear program, and for Gomory
and Hu [13] it took the form of network flow problems. For other special
structures the subsidiary problem of finding the most violated constraint

might assume the form of a dynamic program, or an integer program, etc.;

8'1‘0 fornally view Kelley®mcthodas an instance of relaxétion one may

represent the relevant portion of the set {x:gi(x) >0, icyl in (P)

by the intersection of &n infinite number of containing half-spaces.
(P) can thus be written as the problem of maximizing f(x) subject to
x in X and G(x') + Yx? (x-x') > 0 for all x' in X such that

G(x') < 0, where G(x) = Min [gl (%) 5300 es gm(x)} and Y, 1s a sub-
gradient of G at x' (if 8 (x') = G(x*') eand g, 1is differenti-
o 0

eble, ther ode can take Y,' as the gradiert of .g, at x'). Kelley's

o
i S S
choice of v corresponds to the constraint G(x ) + Y?(S(x-x ) > 0.

9see especially algorithms I, II, and IV. The minimand of each problem
is the supremum of a collection of linear functions. To view this work
in the present context, each minimand should be expressed as a collection
of constraints using an additional variable and the least upper bound de-
finition of a supremum. An interesting historical sidelight mentioned by
Cheney and Goldstein is that the roots of thelr algorithms, and hence of
relaxasion, date back to E. Remez's work on polynomial approximation pub-
lished in 1934,
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| examples of such algorithms are readily available (see Balinski (1] and

Gomory [12])if we interpret primal algorithms with column-generating

technigues as dual algorithms for the dual problem with row-generating

technigues. Gilmore and Gomory [10, p. 877] have reasoned along these

lines to establish a connection between their computational experience

with the cutting-stock problem and previous experience with Gomory's ]
integer programming algorithms. They conclude that in large linear pro-

gramming problems computation times are likely to be long or erratic

when v 1is a singleton chosen more or less blindly from the violated
constraints, as opposed to the choice of v as the most violated con-
straint.

Condition (c) is met by the usual post-optimality techniques

for adding sdditional constraints if (PS) is a linear program. These

' techniques typically involve an iteration or two of the Dual Method,
although they can be viewed in purely primal terms (consider the addi-
tional constraints as functioms to be maximized until their values reach

0
O):L « The latter view is an appropriate one to use in the general non-

linear case, since it leads to a fairly easy modification of most primal
nonlinear programming algorithms applicable to (PS) and takes advan-
tage of the avallability of a feasible and optimal solution to the pre-

l vious relaxed problem.

loAlt:ernat::Lvely, one can parametrically deform (in any of several ways)
each relaxed problem into the next one.
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V. DUAL INTERPRETATION: RESTRICTION

The utter simplicity of relaxation certainly makes its in-
terpretation in terms of (P) completely transparent. In the purely
linear case there is no difficulty interpreting relaxation in terms of
the dual of (P) ac well, since the Dual Method amounts to the ordi-
nary Simplex Method applied to the dual problem. In this section we
esteblish an interpretation of relaxation in terms of the dual of (P)
for the nonlinear case. It is of considerable interest that relaxation
applied to (P) corresponds to a "restriction" tactic applied to the
dual. Restriction is a useful tactic in its own right, with a rationale

and justification paralleling that of relaxation. in many respects.

The natural dual problemll associated with (P) is

(D) Minimize [ sup f(x)+ 2 A 8 (x) ).
Xi >0, ieM xeX ieM

We assert that the sequence of optimal multipliers associated with the
& constraints of the successive relaxed problems -- which can be
guaranteed to exist under various mild qualifications == constitutes a

sequence of improving feasible solutions to (D). Let us denote the

optimal multipliers for (PS) by kf , 1eS. Since k? is necessarily

non-negative, the feasibility of these multipliers in (D) is inmediate

S
i

S o
1zing (x ,\"), moreover, we have

(take A, = 0 for i1eM-S). By the saddlepoint condition character-

£(x) = My, £(x) + L A g (x).
ieM

llA thorough discussion of modern nonlinear duality theory is given by
Rockafellar [20]. Ve assume here at least a passing familiarity with
the main concepts and results.
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That < AS>  1s an improving sequence of feasible solutions of (D) is
thus confirmed by the result of sec, II that < f (xs) > 1s a non-
increasing sequence.

This result leads one to ask whether there is a natural rationale
for relaxation when viewed as a method for solving the dual problem.
The answer is affirmative: relaxation applied to (P) amounts to a
"restriction” tactic applied to (D). To explain this assertion, it
will be more enlightening to explain "restriction” as applied to (P)
rather than to (D). The reader can then understand our assertion in
light of the fact that g (xs) plays the role of the dual var®able
associated with A, in (D); 1t can be shown thrat (gl(xs),...,gm(xs))
is a subgradient of the minimand of (D) evaluated at = (defined as
gbove for S CM).

Let us now briefly consider restriction, the opposite of re-
laxation, in the context of (P). Again (P) is converted into a se-
quence of simpler problems, but nov the simpler problems are restricted

instead of relaxed. Each is of the form

(Qs) Maximize f(x) subject to gi(x) =0,1e¢ SCM
xeX
g;(x) > 0, 1 ¢ M-5,

vhere S 1is a subset of the construint indices. In order that (QS)
should be a concave program we require 81 to be linear for 1 ¢ S;

50 we may as well assurie that 8y is linear for all 1 e¢ M by in-
corporating any nonlinear constraints into X. Usually the constraints
gi(x) >0, 1 € M, will include the customary non-negativity constraints

on the variables (gi(x) = ki). In this case the variables indexed by
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Step 1

Step 2
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S wvanish in (QS); thus if S 1s populous relative to M, (QS) is
much more tractible than (P).

' Assume that (QS) admits an optimal solution whenever it is
feasible and its maximand is bounded above on the feasible region, and
that in this event optimal multipliers associated with the g, con-
straints are available. Then the following tactic 1is well~defined and

terminates in a finite number of steps.

Restriction

Put f=-® and S = So, where S° 1is any subset
of M such that (Qso) is feasible (such a subset
fails to exist if and only if (P) is infeasible).
Solve (QS) for an optimal sclution A (1f the
maximand of (QS) is unbounded above, then the same

is obviously true of (Pj). If the optimal multipliers

S
Hi associated with constraints gi(x) =0 (1ieS)

are all non-negative, then terminate with the message
"S 15 an optimal solution of (P)"; otherwise, go

to Step 2.

Put v equal to any subset of S that includes at
least one constraint in S for which uf < 0. If
f(xs) >f, replace S by S U E-v where E =

(1 ¢ M-S: gi(xs) = 0); othervise (i.e., if f£(x°)

= T), replace S by S-v . Return to Step 1.
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Note that constraints can enter the restricted set S, as
well as leave it, so long as f(xs) is increasing. Clearly each trial
solution x° is feasible in (P), and < f(xs) > 1s a non-decreasing
sequence,

It is easy to see that an appropriate specialization of this
tactic to the linear case is equivalent to the ordinary Simplex Method.
The set S then corresponds at each iteration to the current non-basic
variables.

The circumstances in which restriction is an appealing tactic
are precisely those mentioned in sec. I, if we read "variasbles" for
"constraints" in the three properties of (P) mentioned there. For
example, restriction is appealing when the number of varisbles is very
great, or when the problem data corresponding to many of the variables
are avallsble only implicitly unless substantial expense is incurred.
The circumstances in which restriction is likely to be computationally
effective are analagous to those discussed in the previous section for
relaxation. The analogue of condition (b), for instance, is that there
must be a reasonably efficient mechanism at Step 2 for identifying
variables in S whose corresponding multipliers are negative. Indeed,
this is exactly what "column-generation" schemes for large-scale linear
programming are all sbout. See the surveys by Balinski [1] and Gomory
(12) for lucid discussions of such schemes.

That restriction 1s most highly developed in the context of
linear programming should not obscure its applicability in the non-
linear case. An outstanding example of the use of restriction for
large structured nonlinear programs is Rosen's convex partition pro-

gramming algorithm (in [14]), where it is used subsequent to a




"partitioning" of the variables.

Restriction and relaxation, although opposites of one another,
are by no means incompatible. The author has indicated elsewhere ([8]
end [9]) how the two tactics can be employed simultaneously. The re-
duced problems then become simpler still than (PS) or (QS), but assurance
of finite termination requires somewhat more intricate corntrol. The

computational advantages of such a combined approach can be:dramaticle.

12A.M. Geoffrion, "Constrained Maximum Liklihood Estimation of Several
Stochastically Ordered Distributions," The RAND Corporation, forthcoming.
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